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Multiparameter Optimization of
Inverse Filtering Algorithms

Tamds Dabdczi and Istvan Kollr, Senior Member, IEEE

Abstract—This paper investigates inverse filtering of transient
signals. The problem is ill-conditioned, which means that a small
uncertainty in the measurement causes large deviations in the
reconstructed signal. This amplified noise has to be suppressed
at the price of bias in the estimation.

The most difficult task is to find the optimal degree of noise
reduction. Deconvolution algorithms are usually controlled by one
or a few parameters. Several algorithms can be found in the
literature to find the hest setting of inverse filtering methods;
however, usually methods with only one free parameter are
handled.

In this paper, an algerithm is proposed to optimize several
parameters, on the basis of a spectral model. Multiparameter
inverse filtering methods have the advantage that they can be
better adapted to the measurement system, and to the noise
and signal to be measured. The superiority of the proposed
optimization method is demonstrated both on simulated and on
experimental data.

1. INTRODUCTION

EASUREMENT of transient signals with large band-

width requires special effort. If the bandwidth of the
measurement system is not high enough, the observed wave-
form will be a distorted version of the original one. In
such a case the measured signal should be postprocessed
to get accurate results, by compensating the effect of the
measurement system. This procedure is called inverse filtering.
When the measurement system can be modeled as a linear and
time-shift invariant one, the relation between the input and the
output signals can be described by convolution. In this special
case inverse filtering is called deconvolution. In this paper the
latter case will be investigated.

The model of the measurement system is depicted in Fig. 1.
Unfortunately, the inverse filtering problem is ill-posed, which
means that small uncertainties in the output signal, caused by
the noise, lead to great differences in the estimated input. The
amplified noise has to be suppressed at the price of bias in the
estimate. Several algorithms are proposed to compensate the
effect of the measurement system, with simultaneous noise

Manuscript received April 24, 1995; revised September 18, 1995. This
research was supported by the Foundation for the Hungarian Higher Education
and Research, the Hungarian Fund for Scientific Research (grant OTKA
F16457), and the U.S.-Hungarian Science and Technology Joint Fund, Project
299.

The authors are with the Department of Measurement and Instrumentation
Engineering, Technical University of Budapest, H-1521 Budapest, Hungary.

Publisher Item Identifier S 0018-9456(96)02480-1.

noise
H() = 'A&’ Kf) ——>
input abservation {estmated Input
Measurement system Inverse filter

Fig. 1. Model of the measurement and the inverse filtering system.

suppression ([1]-[10]). They are mostly controlled by one
or two parameters [e.g., cutoff frequency of a lowpass filter,
regularization parameter(s) etc.]. .

The most difficult problem is to select the optimal setting
of the parameters to find the tradeoff between the bias and
the variance in the estimate. The existing techniques usually
handle one parameter only, which restricts the shape of the
inverse filter. We propose a model-based optimization tech-
nique where the number of parameters is only limited by the
quality of the spectral signal models. It makes possible to
compensate the effect of the measurement system with more
complicated inverse filters than the single-parameter methods.
The superiority of our algorithm will be demonstrated on
an extended regularization method, for both simulated and
experimental data.

II. PREVIOUS OPTIMIZATION TECHNIQUES

In the first attempts to do optimal inverse filtering, simple
methods were used (e.g., lowpass filtering after compensat-
ing the effect of the measurement system), and the tradeoff
parameter was adjusted manually, according to the a priori
knowledge about the signal shape, smoothness etc.

Nahman praposed a henristic method to find the best input
estimation, using frequency-domain regularization [4]. The
optimal setting is that for which the standard deviation of
the imaginary part of the estimated signal after the inverse
Fourier transform is minimal. The convergence depends on
the implementation of the discrete Fourier transform.

Parruck et al. calculated the optimal deconvolution for
impulse response data [S]. A steplike waveform is derived by
integrating the impulse response. The tail part of the calculated
step response is investigated. The optimum setting is that for
which the empirical mean value and the empirical standard
deviation of the tail part of the step response satisfy certain
conditions. Although the optimum satisfies the conditions,
manual interaction is required, since the solution is not unique.
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Bertocco et al. investigated steplike waveforms [6], based
on the a priori knowledge that the output reconstruction noise
should have a uniform distribution in the whole record length.
They separated the signal into two parts, a front one and a tail
one. The optimum is that for which the average squared output
reconstruction errors in the two parts are equal. The solution
is uniqué;;however, the optimization is proposed for only one
parameter regularization method.

Younan er al. developed an optimization method for a
lowpass filtering method [7]. They investigated the residual
of the filtered observation by a randomness test. This method
gives satisfactory results; however, the lowpass nature of the
measurement system and the signal, and the wide-band nature
of the measurement noise are assumed.

Dhaene et al. have presented a technique to optimize two
parameters [8]. They tried to find the best set of parame-
ters for the regularization method, where both energy and
smoothness constraints are incorporated into the error criterion.
The frequency range is separated into pass bands, attenuation
bands and stop bands. They defined noise factors which
should be calculated for a grid of parameters in every band.
The noise factors should satisfy certain conditions, which
can be evaluated on three-dimensional graphs or contour
plots. Unfortunately, manual interaction is required to separate
the spectra into bands and to evaluate the three-dimensional
graphs.

1II. MODEL-BASED MULTIPARAMETER
OPTIMIZATION TECHNIQUE

We propose an optimization method to find the best set
of parameters for inverse filtering methods. The optimum is
defined as the input estimation which has the least squared
error. The method is based on modeling of the magnitude of
the signal spectra. Using an approximate model for the spectra
of the input signal and of the noise, the squared error of the
estimated input signal (error energy) can be approximately
calculated in the frequency domain. The best parameter set
is defined for which the approximate error energy is minimal.

In the following it will be assumed that the data are available
in sampled form. The error energy of the estimated input signal
can be calculated both in the time and frequency domain using
Parseval’s theorem

N-1
EE=T,) [o(n) - zeu(n)]?
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n=0

where E'E is the error energy, z(n) is the input signal, z,.:(n)
is the estimated input, 7T, is the sampling period, N is the
number of sampled points, and the capital letters correspond
to the DFT’s of the signal sequences. Here the problem is
that x(n) is unknown, so for the minimization of (1) we have
to make some approximations. Assuming an additive output
noise source and substituting the explicit form of the spectrum

of the estimated signal into (1) we get
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where H(k) is the transfer function of the measurement
system, K (k) is the transfer function of the inverse filter, N (k)
is the DFT of the noise sequence, and (k) is the phase angle
of the two terms in the last sum. The error energy is thus split
into three terms

EE = EFEyias + EEnoise + EEbias,noise 3

where the bias term is due to the distortion of the useful signal,
the noise term is due to the variance, and the EEyias, noise
term is due to the cross relation of the previous two terms. We
approximate the error expression by two steps:

1) the EEyiqs, noise term is neglected, and

2) instead of the absolute values of the signal and noise
spectra an approximate spectral model will be substi-
tuted into X (k) and N(k).

In [9] it was shown for deconvolution methods with one
free parameter that under certain conditions the shape of the
error function is not significantly modified with the above
approximations; thus the location of the minimum of the error
function remains nearly the same. The approximate error en-
ergy is calculated for a set of parameter combinations, and the
location of the minimum is taken as the best parameter setting
of the inverse filter. The input signal is then reconstructed
using the optimal parameters. For the model building, an
iterative algorithm was proposed in [9]. The main idea of the
algorithm is that the magnitude of the DFT of the observation
is a satisfactory model for the input signal if the distortion
is not extremely high. However, the spectral model can be
refined, if the model of the input signal is substituted with the
magnitude of the DFT of the previous input estimation. After a
few iterations (5-10), the fluctuation of the parameter is small
enough, and the last estimation is accepted as the optimum.
The noise can usually be modeled well by a white spectrum
(constant magnitude).

In this paper, it will be shown that the method is suitable to
find the best input estimation even if more than one parame-
ter should be optimized. The advantage of a deconvolution
method with more free parameters is that it can be better
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adapted to the measurement system, input signal and noise.

However, care should be taken to select the number of free .

parameters, because only rough information is given about
the spectra of the useful signal and of the noise. Too many
free parameters would cause the incorporation of the spectral
modeling errors into the input estimation.

This optimization algorithm can generally be used for
every kind of deconvolution method. We will demonstrate its
abilities in the regularization method.

A. Regularization of the Transfer Function

The ill-posedness of the inverse filtering problem can be
well iliustrated in the frequency domain. If we compensate the
effect of the measurement system, the noise will be amplified

at those frequencies where the measurement system has large

suppression

z(H N(f)
H(f) H(f)

where X.q:(f) corresponds to the esumated input signal, and
Z(f) corresponds to the noisy observation. Equation (4) is
the solution if the prediction error is minimized in the least
squares sense. However, if the error criterion is redefined, a
well-posed problem can be obtained by minimizing not only
the prediction error but its sum with another regularization
function. If this function is the energy of the input signal, the
following inverse filter can be obtained:

K(f) = 2"

[H(HP + A
where A is the regularization parameter which controls the
noise reduction, and superscript * denotes complex conjuga-
tion. The parameter A puts a limit to the noise amplification,
because the denominator becomes lower bounded.

Instead of the energy constraint, any derivative of even order
can be incorporated into the error criterion. Moreover, they can
be taken into account simultancously. We define an inverse
filter for which the cnergy, the smoothness, and the fourth-
order derivative of the input signal are 1ncorporated into the
error criterion

Cost =|2(3) ~ Yprea(d)|| + Mlzest E)|] -
+ MNEP@est (D)|] + 81| L Test (3)] ©

where y,r4(%) denotes the predicted output signal, calculated
from the estimated input, ||---|| denotes the > morm, L2
denotes the second-order, and L* denotes the fourth-order
backward difference operator. The parameters X, v, and §
control the ratio of the different terms. The above criterion
leads to the inverse filter

H(f)”

K(f)= [H ()2 +61L(HIE +ALDZ+ A

where L(f) is the Fourier transform of the second-order
backward difference sequence. According to our experience,
this inverse filter can adapt to a very wide range of signals
and measurement systems. The results are generally better
than those obtained from the regularization method with one
parameter.
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Fig. 2. Bandpass measurement system with a narrow-band input. Input
signal (solid line), noisy output signal (dotted line).

. 1 free parameter

160 300

0 50 150 00
] 3 free parameters
-1g 50 100 150 300 350 300

Fig. 3. Reconstructed signalé, true input (dotted line), estimated input (solid
line, shifted right with 2 points). Upper figure: one-parameter regularization
(bounded energy). Lower figure: three-parameter regularization.

IV. SIMULATION RESULTS

In order to illustrate the effect of the three-parameter reg-
ularization method, a bandpass measurement system with
a narrow-band input signal will be investigated. Normally
distributed white noise is added to the output of the system
(Fig. 2). The output SNR (relating the energies in the given
time interval) is 20 dB.

Using the multiparameter optimization technique we cal-
culated the error energy of the estimated input signal. The
minimum of the three-dimensional error surface was found
by common numerical optimization techniques (c.g., gradient,
Newton—Gauss or Levenberg—-Marquardt method [10]). The
optimal estimation was calculated for both the three- and
one-parameter regularization method (bounded energy). Using
the one-parameter regularization method (bounded energy) an
acceptable result is obtained (Fig. 3, upper figure), but the
tail part contains small oscillations, caused by the noise. With
the three-parameter method a smooth estimation was obtained,
similar to the true input (lower figure). The squared error was
decreased to one third.
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Fig. 4. Error surface of the two-parameter regularization method.
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Fig. 5. Diagram of the high-voltage measurement setup.

The error surface can be visualized for two parameters.
Optimizing only one parameter means that the location of the
minimum is seeking on the right edge of Fig. 4 (parameter2
is set to zero), which differs from the global minimum. (The
same is valid, if parameter2 is minimized, and parameterl is
set to zero.) The global minimum can be found by optimizing
more parameters together.

V. EXPERIMENTAL VERIFICATION

Testing insulators with lightning impulses is a common
method in high-voltage engineering [11]. A large voltage
of several hundred kilovolts up to 4 MV with duration of
2-200 us is applied to the insulator, e.g., power transformers.
From the shape of the measured signal the insulation can
be verified and a possible fault source can be determined,
by comparing the waveforms measured at full- and reduced-
voltage levels. Such large voltages can only be measured
through a special high-voltage divider. The common dividers
often fail to satisfy the demands of the large bandwidth. In

these cases digital postprocessing of the measured data can
improve the accuracy.

We investigated a damped capacitive divider, which is
suitable for measuring signals with a very wide range of
duration. However, since a general-purpose capacitive divider
has limited bandwidth, the divider fails to properly measure
front-chopped lightning impulses. We compensated the effect
of the divider by the three-parameter regularization method,
and compared the results to the signals, measured with a low-
ohmic reference divider. The measurements were made at a
reduced level, about 60 kV peak value. The measurement
setup is shown in Fig 5.

0 0.5 1 15 2 25 3 35 4 45
[microsecond]

Fig. 6. Measured and reconstructed HV lightning impulse. Time from start
to chopping is about 2.5 ps. Reference divider (dotted line), divider under
test (dashed line), reconstruction (solid line).

0% 05 e 15 2 25

Fig. 7. Measured and reconstructed HV lightning impulse. Time from start
to chopping is about 0.7 us. Reference divider (dotted line), divider under
test (dashed line), reconstruction (solid line).

The measured and reconstructed signals are depicted in -
Fig. 6. The estimated signal is very close to the output of the
reference divider. The optimal parameter set is the fo]lowmg
6 = 385, v = 2.3, A = 0.0027.

If the duration of the signal is shortened, the optimal param-
eter set is the following: § = 1.9, v = 0.51, A = 0.0013. The
improvement is now more significant (Fig. 7). This can be seen
well from the error of the important parameters of the signals.

The peak value was measured with the investigated divider
with 32% error, while it was decreased to 2.1%. Similarly,
the rising slope was determined from the measurement of the
divider under test with an error of 17%, which was improved
to 1.4%.

VI. CONCLUSIONS

Inverse filtering of transient signals was investigated. We
proposed a model-based optimization algorithm to select the
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best parameter set of inverse filtering algorithms. The number
of parameters to be optimized is only limited by the available
information about the signals. The superiority of deconvolution
methods with several free parameters was demonstrated. The
performance of the multiparameter optimization algorithm was
verified on both simulated and experimental data.

ACKNOWLEDGMENT

The authors express their thanks to the high-voltage labo-
ratory of the Swiss Federal Institute of Technology, Zurich,
for the possibility of doing the high-voltage measurements.
Special thanks are due to the head of the laboratory, Prof. Dr.
Walter Zaengl, for his support and very valuable discussions.

REFERENCES

[1} A.N. Tikbonov and V. Y. Arsenin, Solution of Ill-Posed Problems.New
York: Wiley, 1977. !

[2] P. B. Crilly, “A quantitative evaluation of various iterative deconvo-
lution algorithms,” IEEE Trans. Instrum. Meas., vol. 40, no. 3, pp.
558-562, 1991.

[3] B. D. O. Anderson and J. B. More, Optimal Filtering. Englewood
Cliffe, NJ: Prentice Hall, 1979,

[4] N. S. Nahman, “Software correction of measured pulse data,” in
Fast Electrical and Optical Measurements, NATO ASI Series, T. E.
Thompson and L. H. Luessen, Eds. Dordrecht, The Netherlands:
Martin Nijhoff, 1986, pp. 351-417. .

[S] B. Parruck and S. M. Riad, “An optimization criterion for itcrative
deconvolution,” IEEE Trans. Instrum. Meas., vol. IM-32, no. 10, pp.
137-140, 1983.

[6] M. Bertocco, C. Narduzzi, C. Offelli, and D. Petri, “An improved
method for iterative identification of bandlimited linear systems,” in
IEEE Instr tation and Measurement Technol. Conf., Atlanta, GA,
May 14-16, 1991, CH2940-5/91, pp. 368-372.

[7] N. H. Younan, A. B. Kopp, D. B. Miller, and C. D. Taylor, “On
correcting HV impulse measurements by means of adaptive filtering
and deconvolution,” IEEE Trans. Power Delivery, vol. 6, no. 2, pp.
501-506, 1990.

[8] T. Dhaene, L. Martens, and D. De Zuttert, “Generalized iterative
frequency domain deconvolution technique,” in IEEE Instrumentation
and Measurement Technol. Conf., Trvin, Orange Country, CA, May
18-20, 1993, 93CH3291-0, pp. 85-87.

[9] T. Dabbezi, “Deconvolution of transient signals,” Ph.D. dissertation,

Technical University of Budapest, available as Tech. Rep. of the

Technical University of Budapest, Ser. Elect. Eng., no. TUB-TR-94-

EE12. .

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-

ling, Numerical Recipes, The Art of Scientific Computing. Cambridge:

Cambridge University Press, 1988.

[11] R. Malewski and B. Poulin, “Impulse testing of power transformers

using the transfer function method,” IEEE Trans. Power Delivery, vol.
3, no. 2, pp. 476483, 1988,

{10]

Tamés Dabéezi was born in Mohdcs, Hungary, in
1966. He gradnated in electrical engineering from
the Technical University of Budapest, Hungary, in
1990. He received the Ph.D. degree in 1994 from
the same university.

Since 1993, he has been a research fellow at
the Department of Measurement and Instrument
Engineering, Technical University of Budapest.
Presently, he is a guest researcher at the National In-
stitute of Standards and Technology, Gaithersburg,
: R MD. His research area is digital signal processing,
especially inverse filtering, :

A

Istvin Kolldr (M’87-SM’93) for a photograph and biography, see p. 361 of
this TRANSACTIONS.





